Quick Quizzes

1. (b). Object A must have a net charge because two neutral objects do not attract each other. Since object A is attracted to positively-charged object B, the net charge on A must be negative.

2. (b). By Newton’s third law, the two objects will exert forces having equal magnitudes but opposite directions on each other.

3. (c). The electric field at point P is due to charges other than the test charge. Thus, it is unchanged when the test charge is altered. However, the direction of the force this field exerts on the test charge is reversed when the sign of the test charge is changed.

4. (a). If a test charge is at the center of the ring, the force exerted on the test charge by charge on any small segment of the ring will be balanced by the force exerted by charge on the diametrically opposite segment of the ring. The net force on the test charge, and hence the electric field at this location, must then be zero.

5. (c) and (d). The electron and the proton have equal magnitude charges of opposite signs. The forces exerted on these particles by the electric field have equal magnitude and opposite directions. The electron experiences an acceleration of greater magnitude than does the proton because the electron’s mass is much smaller than that of the proton.

6. (a). The field is greatest at point A because this is where the field lines are closest together. The absence of lines at point C indicates that the electric field there is zero.

7. (c). When a plane area A is in a uniform electric field E, the flux through that area is $\Phi_E = EA\cos \theta$ where θ is the angle the electric field makes with the line normal to the plane of A. If A lies in the xy-plane and E is in the z-direction, then $\theta = 0^\circ$ and $\Phi_E = EA = (5.00 \text{ N/C})(4.00 \text{ m}^2) = 20.0 \text{ N} \cdot \text{m}^2/\text{C}$.

8. (b). If $\theta = 60^\circ$ in Quick Quiz 15.7 above, then $\Phi_E = EA\cos \theta = (5.00 \text{ N/C})(4.00 \text{ m}^2)\cos(60^\circ) = 10.0 \text{ N} \cdot \text{m}^2/\text{C}$

9. (d). Gauss’s law states that the electric flux through any closed surface is equal to the net enclosed charge divided by the permittivity of free space. For the surface shown in Figure 15.28, the net enclosed charge is $Q = -6 \text{ C}$ which gives $\Phi_E = Q/\varepsilon_0 = -(6 \text{ C})/\varepsilon_0$.

10. (b) and (d). Since the net flux through the surface is zero, Gauss’s law says that the net change enclosed by that surface must be zero as stated in (b). Statement (d) must be true because there would be a net flux through the surface if more lines entered the surface than left it (or vise-versa).
Answers to Even Numbered Conceptual Questions

2. Conducting shoes are worn to avoid the build up of a static charge on them as the wearer walks. Rubber-soled shoes acquire a charge by friction with the floor and could discharge with a spark, possibly causing an explosive burning situation, where the burning is enhanced by the oxygen.

4. Electrons are more mobile than protons and are more easily freed from atoms than are protons.

6. No. Object \(A \) might have a charge opposite in sign to that of \(B \), but it also might be neutral. In this latter case, object \(B \) causes object \(A \) to be polarized, pulling charge of one sign to the near face of \(A \) and pushing an equal amount of charge of the opposite sign to the far face. Then the force of attraction exerted by \(B \) on the induced charge on the near side of \(A \) is slightly larger than the force of repulsion exerted by \(B \) on the induced charge on the far side of \(A \). Therefore, the net force on \(A \) is toward \(B \).

8. If the test charge was large, its presence would tend to move the charges creating the field you are investigating and, thus, alter the field you wish to investigate.

10. She is not shocked. She becomes part of the dome of the Van de Graaff, and charges flow onto her body. They do not jump to her body via a spark, however, so she is not shocked.

12. An electric field once established by a positive or negative charge extends in all directions from the charge. Thus, it can exist in empty space if that is what surrounds the charge.

14. No. Life would be no different if electrons were positively charged and protons were negatively charged. Opposite charges would still attract, and like charges would still repel. The designation of charges as positive and negative is merely a definition.

16. The antenna is similar to a lightning rod and can induce a bolt to strike it. A wire from the antenna to the ground provides a pathway for the charges to move away from the house in case a lightning strike does occur.

18. (a) If the charge is tripled, the flux through the surface is also tripled, because the net flux is proportional to the charge inside the surface. (b) The flux remains constant when the volume changes because the surface surrounds the same amount of charge, regardless of its volume. (c) The flux does not change when the shape of the closed surface changes. (d) The flux through the closed surface remains unchanged as the charge inside the surface is moved to another location inside that surface. (e) The flux is zero because the charge inside the surface is zero. All of these conclusions are arrived at through an understanding of Gauss’s law.

20. (a) \(-Q\) (b) \(+Q\) (c) 0 (d) 0 (e) \(+Q\) (See the discussion of Faraday’s ice-pail experiment in the textbook.)
22. The magnitude of the electric force on the electron of charge e due to a uniform electric field \mathbf{E} is $F = eE$. Thus, the force is constant. Compare this to the force on a projectile of mass m moving in the gravitational field of the Earth. The magnitude of the gravitational force is mg. In both cases, the particle is subject to a constant force in the vertical direction and has an initial velocity in the horizontal direction. Thus, the path will be the same in each case—the electron will move as a projectile with an acceleration in the vertical direction and constant velocity in the horizontal direction. Once the electron leaves the region between the plates, the electric field disappears, and the electron continues moving in a straight line according to Newton’s first law.
Answers to Even Numbered Problems

2. \(5.71 \times 10^{13} \text{ C}\)

4. \(F = 1.91 \left(k, \frac{q^2}{a^2} \right) \) along the diagonal toward the negative charge

6. \(2.25 \times 10^{-9} \text{ N/m}\)

8. 5.08 m

10. \(F_6 = 46.7 \text{ N (left)}, \ F_{15} = 157 \text{ N (right)}, \ F_2 = 111 \text{ N (left)}\)

12. \(3.89 \times 10^{-7} \text{ N at 11.3}^\circ \text{ below } +x \text{ axis}\)

14. \(x = 0.634d\), stable if third bead has positive charge

16. 1.45 m beyond the \(-3.00 \text{ nC}\) charge

18. (a) \(2.00 \times 10^7 \text{ N/C to the right}\) (b) 40.0 N to the left

20. (a) \(5.27 \times 10^{13} \text{ m/s}^2\) (b) \(5.27 \times 10^5 \text{ m/s}\)

22. \(1.63 \times 10^4 \text{ N/C \ directed opposite to the proton’s velocity}\)

24. \(1.88 \times 10^3 \text{ N/C at 4.40}^\circ \text{ below } +x \text{ axis}\)

26. at \(y = +0.85 \text{ m}\)

28. (a) \(q_1/q_2 = -\frac{1}{3}\) (b) \(q_2 > 0, \ q_1 < 0\)

34. (a) zero (b) \(1.8 \times 10^6 \text{ N/C}\) (c) \(1.1 \times 10^5 \text{ N/C}\)

36. \(\sim 1 \mu\text{m}\)

38. (a) \(2.0 \times 10^6 \text{ N} \cdot \text{m}^2/\text{C}\) (b) 0

40. (a) \(-55.7 \text{ nC}\) (b) negative, with a spherically symmetric distribution

42. \(5.65 \times 10^5 \text{ N} \cdot \text{m}^2/\text{C}\)

48. (a) \(8.2 \times 10^{-8} \text{ N}\) (b) \(2.2 \times 10^6 \text{ m/s}\)

50. 5.25 \(\mu\text{C}\)
52. (a) downward (b) 3.43 μC

54. 2.51 \times 10^{-10}

56. (a) 0.307 s
 (b) Yes, the absence of gravity produces a 2.28% difference.

60. (d) \vec{E} = 0 at x = +9.47 m, y = 0.

62. 2.0 μC

64. (a) 37.0° or 53.0°
 (b) 1.66 \times 10^{-7} s and 2.21 \times 10^{-7} s
Problem Solutions

15.1 Since the charges have opposite signs, the force is one of attraction. Its magnitude is
\[
F = \frac{k_e |q_1 q_2|}{r^2} = \left(8.99 \times 10^9 \text{ N} \cdot \text{m}^2 / \text{C}^2 \right) \left(4.5 \times 10^{-9} \text{ C} \right) \left(2.8 \times 10^{-9} \text{ C} \right) \left(3.2 \text{ m} \right)^2 = 1.1 \times 10^{-8} \text{ N}
\]

15.2 The electrical force would need to have the same magnitude as the current gravitational force, or
\[
k_e q^2 \frac{2}{r^2} = G \frac{M_m m_{moon}}{r^2} \quad \text{giving} \quad q = \sqrt{\frac{G M_m m_{moon}}{k_e r}}
\]
This yields
\[
q = \sqrt{\frac{(6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 / \text{kg}^2) (5.98 \times 10^{24} \text{ kg}) (7.36 \times 10^{22} \text{ kg})}{8.99 \times 10^9 \text{ N} \cdot \text{m}^2 / \text{C}^2}} = 5.71 \times 10^{13} \text{ C}
\]

15.3 \[
F = \frac{k_e (2e)(79e)}{r^2}
\]
\[
= \left(8.99 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2} \right) \left(158 \right) \left(1.60 \times 10^{-19} \text{ C} \right)^2 \left(2.0 \times 10^{-14} \text{ m} \right)^2 = 91 \text{ N (repulsion)}
\]
15.4 The attractive forces exerted on the positive charge by
the negative charges are shown in the sketch and have
magnitudes

\[F_i = F_2 = k \frac{q^2}{a^2} \quad \text{and} \quad F_3 = k \frac{q^2}{2a^2} \]

\[\Sigma F_x = F_2 + F_3 \cos 45^\circ = k \frac{q^2}{a^2} + k \frac{q^2}{2a^2} (0.707) = 1.35 \frac{kq^2}{a^2} \]

and

\[\Sigma F_y = F_1 + F_3 \sin 45^\circ = k \frac{q^2}{a^2} + k \frac{q^2}{2a^2} (0.707) = 1.35 \frac{kq^2}{a^2} \]

\[F_R = \sqrt{(\Sigma F_x)^2 + (\Sigma F_y)^2} = 1.91 \frac{kq^2}{a^2} \quad \text{and} \quad \theta = \tan^{-1} \left(\frac{\Sigma F_y}{\Sigma F_x} \right) = \tan^{-1} (1) = 45^\circ \]

so

\[\vec{F}_R = 1.91 \frac{kq^2}{a^2} \] along the diagonal toward the negative charge

15.5 (a) \[F = \frac{k_e (2e)^2}{r^2} = \left(8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \right) \left(\frac{4 \times (1.60 \times 10^{-19})^2}{(5.00 \times 10^{-15})^2} \right) = 36.8 \, \text{N} \]

(b) The mass of an alpha particle is \(m = 4.0026 \, \text{u} \), where \(\text{u} = 1.66 \times 10^{-27} \, \text{kg} \) is the
unified mass unit. The acceleration of either alpha particle is then

\[a = \frac{F}{m} = \frac{36.8 \, \text{N}}{4.0026 \times \left(1.66 \times 10^{-27} \, \text{kg} \right)} = 5.54 \times 10^{27} \, \text{m/s}^2 \]
15.6 The attractive force between the charged ends tends to compress the molecule. Its magnitude is

\[F = k_e \left(\frac{1e}{r} \right)^2 = \left(\frac{8.99 \times 10^9 \text{ N} \cdot \text{m}^2}{\text{C}^2} \right) \left(\frac{1.60 \times 10^{-19} \text{ C}}{2.17 \times 10^{-6} \text{ m}} \right)^2 = 4.89 \times 10^{-17} \text{ N} \].

The compression of the “spring” is

\[x = (0.010 \text{ m}) = (0.010 \text{ m}) (2.17 \times 10^{-6} \text{ m}) = 2.17 \times 10^{-8} \text{ m} \],

so the spring constant is \(k = \frac{F}{x} = \frac{4.89 \times 10^{-17} \text{ N}}{2.17 \times 10^{-8} \text{ m}} = \frac{2.25 \times 10^{-9} \text{ N/m}}{2.17 \times 10^{-8} \text{ m}} \).

15.7 1.00 g of hydrogen contains Avogadro’s number of atoms, each containing one proton and one electron. Thus, each charge has magnitude \(|q| = N_A e \). The distance separating these charges is \(r = 2R_e \), where \(R_e \) is Earth’s radius. Thus,

\[F = k_e \left(\frac{N_A e}{2R_e} \right)^2 = \left(\frac{8.99 \times 10^9 \text{ N} \cdot \text{m}^2}{\text{C}^2} \right) \left(\frac{6.02 \times 10^{23} \text{ C}}{4 \times 6.38 \times 10^6 \text{ m}^2} \right)^2 = 5.12 \times 10^5 \text{ N} \]

15.8 The magnitude of the repulsive force between electrons must equal the weight of an electron, Thus, \(\frac{k_e e^2}{r^2} = m_e g \)

or \(r = \sqrt{\frac{k_e e^2}{m_e g}} = \sqrt{\left(\frac{8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2}{(9.11 \times 10^{-31} \text{ kg})(9.80 \text{ m/s}^2)} \right) = 5.08 \text{ m} \}

15.9 (a) The spherically symmetric charge distributions behave as if all charge was located at the centers of the spheres. Therefore, the magnitude of the attractive force is

\[F = k_e \frac{|q_1 q_2|}{r^2} = \left(\frac{8.99 \times 10^9 \text{ N} \cdot \text{m}^2}{\text{C}^2} \right) \left(\frac{12 \times 10^{-9} \text{ C}(18 \times 10^{-9} \text{ C})}{(0.30 \text{ m})^2} \right) = 2.2 \times 10^{-5} \text{ N} \]
(b) When the spheres are connected by a conducting wire, the net charge
\[q_{\text{net}} = q_1 + q_2 = -6.0 \times 10^{-9} \text{ C} \]
will divide equally between the two identical spheres. Thus, the force is now
\[
F = k \left(\frac{q_{\text{net}}/2}{r^2} \right)^2 = \left(8.99 \times 10^{9} \text{ N} \cdot \text{m}^2/\text{C}^2 \right) \left(\frac{-6.0 \times 10^{-9} \text{ C}}{4(0.30 \text{ m})^2} \right)^2
\]
or
\[
F = 9.0 \times 10^{-7} \text{ N (repulsion)}
\]

15.10 The forces are as shown in the sketch at the right.

\[
F_1 = \frac{k q_1 q_2}{r_{12}^2} = \left(8.99 \times 10^{9} \text{ N} \cdot \text{m}^2/\text{C}^2 \right) \left(\frac{6.00 \times 10^{-6} \text{ C}}{(3.00 \times 10^{-2} \text{ m})^2} \right) = 89.9 \text{ N}
\]
\[
F_2 = \frac{k q_1 q_3}{r_{13}^2} = \left(8.99 \times 10^{9} \text{ N} \cdot \text{m}^2/\text{C}^2 \right) \left(\frac{6.00 \times 10^{-6} \text{ C}(1.50 \times 10^{-6} \text{ C})}{(5.00 \times 10^{-2} \text{ m})^2} \right) = 43.2 \text{ N}
\]
\[
F_3 = \frac{k q_2 q_3}{r_{23}^2} = \left(8.99 \times 10^{9} \text{ N} \cdot \text{m}^2/\text{C}^2 \right) \left(\frac{1.50 \times 10^{-6} \text{ C}(2.00 \times 10^{-6} \text{ C})}{(2.00 \times 10^{-2} \text{ m})^2} \right) = 67.4 \text{ N}
\]

The net force on the 6 \(\mu \text{C} \) charge is \(F_6 = F_1 - F_2 = 46.7 \text{ N (to the left)} \)

The net force on the 1.5 \(\mu \text{C} \) charge is \(F_{1,5} = F_1 + F_3 = 157 \text{ N (to the right)} \)

The net force on the -2 \(\mu \text{C} \) charge is \(F_{-2} = F_2 + F_3 = 111 \text{ N (to the left)} \)
15.11 In the sketch at the right, F_R is the resultant of the forces F_6 and F_3 that are exerted on the charge at the origin by the 6.00 nC and the −3.00 nC charges respectively.

\[
F_6 = \left(\frac{8.99 \times 10^9 \text{ N} \cdot \text{m}^2}{\text{C}^2} \right) \left(\frac{6.00 \times 10^{-9} \text{ C} \times 5.00 \times 10^{-9} \text{ C}}{(0.300 \text{ m})^2} \right) = 3.00 \times 10^{-6} \text{ N}
\]

\[
F_3 = \left(\frac{8.99 \times 10^9 \text{ N} \cdot \text{m}^2}{\text{C}^2} \right) \left(\frac{3.00 \times 10^{-9} \text{ C} \times 5.00 \times 10^{-9} \text{ C}}{(0.100 \text{ m})^2} \right) = 1.35 \times 10^{-5} \text{ N}
\]

The resultant is $F_R = \sqrt{(F_6)^2 + (F_3)^2} = 1.38 \times 10^{-5} \text{ N}$ at $\theta = \tan^{-1} \left(\frac{F_3}{F_6} \right) = 77.5^\circ$

or $\mathbf{F}_R = 1.38 \times 10^{-5} \text{ N}$ at 77.5° below −x axis

15.12 Consider the arrangement of charges shown in the sketch at the right. The distance r is

\[
r = \sqrt{(0.500 \text{ m})^2 + (0.500 \text{ m})^2} = 0.707 \text{ m}
\]

The forces exerted on the 6.00 nC charge are

\[
F_2 = \left(\frac{8.99 \times 10^9 \text{ N} \cdot \text{m}^2}{\text{C}^2} \right) \left(\frac{6.00 \times 10^{-9} \text{ C} \times 2.00 \times 10^{-9} \text{ C}}{(0.707 \text{ m})^2} \right) = 2.16 \times 10^{-7} \text{ N}
\]

and $F_3 = \left(\frac{8.99 \times 10^9 \text{ N} \cdot \text{m}^2}{\text{C}^2} \right) \left(\frac{6.00 \times 10^{-9} \text{ C} \times 3.00 \times 10^{-9} \text{ C}}{(0.707 \text{ m})^2} \right) = 3.24 \times 10^{-7} \text{ N}$
Thus, \(\Sigma F_x = (F_2 + F_3) \cos 45.0^\circ = 3.81 \times 10^{-7} \text{ N} \)

and \(\Sigma F_y = (F_2 - F_3) \sin 45.0^\circ = -7.63 \times 10^{-8} \text{ N} \)

The resultant force on the 6.00 nC charge is then

\[
F_R = \sqrt{(\Sigma F_x)^2 + (\Sigma F_y)^2} = 3.89 \times 10^{-7} \text{ N at } \theta = \tan^{-1} \left(\frac{\Sigma F_y}{\Sigma F_x} \right) = -11.3^\circ
\]

or \(\vec{F}_R = 3.89 \times 10^{-7} \text{ N at } 11.3^\circ \text{ below } +x \text{ axis} \)

15.13 The forces on the 7.00 \(\mu \text{C} \) charge are shown at the right.

\[
F_1 = \left(8.99 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2} \right) \left(7.00 \times 10^{-6} \text{ C} \right) \left(2.00 \times 10^{-6} \text{ C} \right) \left(0.500 \text{ m} \right)^2 = 0.503 \text{ N}
\]

\[
F_2 = \left(8.99 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2} \right) \left(7.00 \times 10^{-6} \text{ C} \right) \left(4.00 \times 10^{-6} \text{ C} \right) \left(0.500 \text{ m} \right)^2 = 1.01 \text{ N}
\]

Thus, \(\Sigma F_x = (F_1 + F_2) \cos 60.0^\circ = 0.755 \text{ N} \)

and \(\Sigma F_y = (F_1 - F_2) \sin 60.0^\circ = -0.436 \text{ N} \)

The resultant force on the 7.00 \(\mu \text{C} \) charge is

\[
F_R = \sqrt{(\Sigma F_x)^2 + (\Sigma F_y)^2} = 0.872 \text{ N at } \theta = \tan^{-1} \left(\frac{\Sigma F_y}{\Sigma F_x} \right) = -30.0^\circ
\]

or \(\vec{F}_R = 0.872 \text{ N at } 30.0^\circ \text{ below the } +x \text{ axis} \)
15.14 Assume that the third bead has charge \(Q \) and is located at \(0 < x < d \). Then the forces exerted on it by the +3\(q \) charge and by the +1\(q \) charge have magnitudes

\[
F_x = \frac{k_e Q (3q)}{x^2} \quad \text{and} \quad F_1 = \frac{k_e Q (q)}{(d-x)^2}
\]

These forces are in opposite directions, so charge \(Q \) is in equilibrium if \(F_x = F_1 \). This gives \(3(d-x)^2 = x^2 \), and solving for \(x \), the equilibrium position is seen to be

\[
x = \frac{d}{1+1/\sqrt{3}} = 0.634d
\]

This is a position of stable equilibrium if \(Q > 0 \). In that case, a small displacement from the equilibrium position produces a net force directed so as to move \(Q \) back toward the equilibrium position.

15.15 Consider the free-body diagram of one of the spheres given at the right. Here, \(T \) is the tension in the string and \(F_r \) is the repulsive electrical force exerted by the other sphere.

\[
\begin{align*}
\sum F_y &= 0 \implies T \cos 5.0^\circ = mg, \quad \text{or} \quad T = \frac{mg}{\cos 5.0^\circ} \\
\sum F_x &= 0 \implies F_r = T \sin 5.0^\circ = mg \tan 5.0^\circ
\end{align*}
\]

At equilibrium, the distance separating the two spheres is \(r = 2L \sin 5.0^\circ \).

Thus, \(F_r = mg \tan 5.0^\circ \) becomes \(\frac{k_e q^2}{(2L \sin 5.0^\circ)^2} = mg \tan 5.0^\circ \) and yields

\[
q = (2L \sin 5.0^\circ) \sqrt{\frac{mg \tan 5.0^\circ}{k_e}}
\]

\[
= \left[2(0.300 \text{ m}) \sin 5.0^\circ \right] \sqrt{\left(\frac{0.20 \times 10^{-3} \text{ kg}}{9.80 \text{ m/s}^2} \sin 5.0^\circ \right) \tan 5.0^\circ / \frac{8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2} = 7.2 \text{ nC}
\]
15.16 The required position is shown in the sketch at the right. Note that this places \(q \) closer to the smaller charge, which will allow the two forces to cancel. Requiring that

\[
F_6 = F_3 \text{ gives }
\]

\[
\frac{k_e (6.00 \text{ nC}) q}{(x + 0.600 \text{ m})^2} = \frac{k_e (3.00 \text{ nC}) q}{x^2}, \text{ or } 2x^2 = (x + 0.600 \text{ m})^2
\]

Solving for \(x \) gives the equilibrium position as

\[
x = \frac{0.600 \text{ m}}{\sqrt{2} - 1} = 1.45 \text{ m beyond the } -3.00 \text{ nC charge}
\]

15.17 For the object to “float” it is necessary that the electrical force support the weight, or

\[
qE = mg \quad \text{or} \quad m = \frac{qE}{g} = \frac{(24 \times 10^{-6} \text{ C})(610 \text{ N/C})}{9.8 \text{ m/s}^2} = 1.5 \times 10^{-3} \text{ kg}
\]

15.18 (a) Taking to the right as positive, the resultant electric field at point \(P \) is given by

\[
E_R = E_1 + E_3 - E_2
\]

\[
= \frac{k_e |q_1|}{r_1^2} + \frac{k_e |q_3|}{r_5^2} - \frac{k_e |q_2|}{r_2^2}
\]

\[
= \left(8.99 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}\right) \left[\frac{6.00 \times 10^{-6} \text{ C}}{(0.0200 \text{ m})^2} + \frac{2.00 \times 10^{-6} \text{ C}}{(0.0300 \text{ m})^2} - \frac{1.50 \times 10^{-6} \text{ C}}{(0.0100 \text{ m})^2}\right]
\]

This gives \(E_R = 2.00 \times 10^7 \text{ N/C} \)

or \(\mathbf{E}_R = \mathbf{2.00 \times 10^7 N/C to the right} \)

(b) \(\mathbf{F} = q \mathbf{E}_R = (-2.00 \times 10^{-6} \text{ C})(2.00 \times 10^7 \text{ N/C}) = -40.0 \text{ N} \)

or \(\mathbf{F} = \mathbf{40.0 N to the left} \)
15.19 We shall treat the concentrations as point charges. Then, the resultant field consists of two contributions, one due to each concentration.

The contribution due to the positive charge at 3000 m altitude is

\[
E_p = k \frac{|q|}{r^2} = \left(8.99 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2} \right) \frac{(40.0 \text{ C})}{(1000 \text{ m})^2} = 3.60 \times 10^5 \text{ N/C (downward)}
\]

The contribution due to the negative charge at 1000 m altitude is

\[
E_n = k \frac{|q|}{r^2} = \left(8.99 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2} \right) \frac{(40.0 \text{ C})}{(1000 \text{ m})^2} = 3.60 \times 10^5 \text{ N/C (downward)}
\]

The resultant field is then

\[
\bar{E} = \bar{E}_p + \bar{E}_n = 7.20 \times 10^5 \text{ N/C (downward)}
\]

15.20 (a) The magnitude of the force on the electron is \(F = \frac{|q| E}{e} = eE \), and the acceleration is

\[
a = \frac{F}{m_e} = \frac{eE}{m_e} = \frac{(1.60 \times 10^{-19} \text{ C})(300 \text{ N/C})}{9.11 \times 10^{-31} \text{ kg}} = 5.27 \times 10^{13} \text{ m/s}^2
\]

(b) \(v = v_0 + at = 0 + (5.27 \times 10^{13} \text{ m/s}^2)(1.00 \times 10^{-8} \text{ s}) = 5.27 \times 10^5 \text{ m/s} \)

15.21 If the electric force counterbalances the weight of the ball, then

\[
qE = mg \quad \text{or} \quad E = \frac{mg}{q} = \frac{(5.0 \times 10^{-3} \text{ kg})(9.8 \text{ m/s}^2)}{4.0 \times 10^{-6} \text{ C}} = 1.2 \times 10^4 \text{ N/C}
\]

15.22 The force an electric field exerts on a positive charge is in the direction of the field. Since this force must serve as a retarding force and bring the proton to rest, the force and hence the field must be in the direction opposite to the proton’s velocity.

The work-energy theorem, \(W_{net} = KE_f - KE_i \), gives the magnitude of the field as

\[
-(qE)\Delta x = 0 - KE_i \quad \text{or} \quad E = \frac{KE_i}{q(\Delta x)} = \frac{3.25 \times 10^{-15} \text{ J}}{(1.60 \times 10^{-9} \text{ C})(1.25 \text{ m})} = 1.63 \times 10^4 \text{ N/C}
\]
15.23
(a) \[a = \frac{F}{m} = \frac{qE}{m_p} = \frac{(1.60 \times 10^{-19} \text{ C})(640 \text{ N/C})}{1.673 \times 10^{-27} \text{ kg}} = 6.12 \times 10^{10} \text{ m/s}^2 \]

(b) \[t = \frac{\Delta v}{a} = \frac{1.20 \times 10^6 \text{ m/s}}{6.12 \times 10^{10} \text{ m/s}^2} = 1.96 \times 10^{-5} \text{ s} = 19.6 \mu\text{s} \]

(c) \[\Delta x = \frac{v_f^2 - v_0^2}{2a} = \frac{(1.20 \times 10^6 \text{ m/s})^2 - 0}{2(6.12 \times 10^{10} \text{ m/s}^2)} = 11.8 \text{ m} \]

(d) \[KE_f = \frac{1}{2} m \cdot v_f^2 = \frac{1}{2}(1.673 \times 10^{-27} \text{ kg})(1.20 \times 10^6 \text{ m/s})^2 = 1.20 \times 10^{-15} \text{ J} \]

15.24
The altitude of the triangle is \(h = (0.500 \text{ m})\sin 60.0^\circ = 0.433 \text{ m} \)

and the magnitudes of the fields due to each of the charges are

\[E_1 = \frac{kq_1}{h^2} = \frac{(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)(3.00 \times 10^{-9} \text{ C})}{(0.433 \text{ m})^2} = 144 \text{ N/C} \]

\[E_2 = \frac{kq_2}{r_2^2} = \frac{(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)(8.00 \times 10^{-9} \text{ C})}{(0.250 \text{ m})^2} = 1.15 \times 10^3 \text{ N/C} \]

and \[E_3 = \frac{k|q_3|}{r_3^2} = \frac{(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)(5.00 \times 10^{-9} \text{ C})}{(0.250 \text{ m})^2} = 719 \text{ N/C} \]
Thus, $\Sigma E_x = E_2 + E_3 = 1.87 \times 10^3$ N/C and $\Sigma E_y = -E_1 = -144$ N/C giving

$$E_k = \sqrt{(\Sigma E_x)^2 + (\Sigma E_y)^2} = 1.88 \times 10^3$$ N/C

and

$$\theta = \tan^{-1}\left(\frac{\Sigma E_y}{\Sigma E_x}\right) = \tan^{-1}(-0.0769) = -4.40^\circ$$

Hence $E_k = 1.88 \times 10^3$ N/C at 4.40° below the +x axis.

15.25 From the symmetry of the charge distribution, students should recognize that the resultant electric field at the center is

$\mathbf{E}_R = 0$

If one does not recognize this intuitively, consider:

$\mathbf{E}_R = \mathbf{E}_1 + \mathbf{E}_2 + \mathbf{E}_3$, so

$$E_x = E_{1x} - E_{2x} = \frac{k_e |q|}{r^2} \cos 30^\circ - \frac{k_e |q|}{r^2} \cos 30^\circ = 0$$

and

$$E_y = E_{1y} + E_{2y} - E_{3y} = \frac{k_e |q|}{r^2} \sin 30^\circ + \frac{k_e |q|}{r^2} \sin 30^\circ - \frac{k_e |q|}{r^2} \sin 30^\circ = 0$$

Thus, $E_k = \sqrt{E_x^2 + E_y^2} = 0$
15.26 If the resultant field is to be zero, the contributions of the two charges must be equal in magnitude and must have opposite directions. This is only possible at a point on the line between the two negative charges.

Assume the point of interest is located on the y-axis at \(-4.0 \text{ m} < y < 6.0 \text{ m}\). Then, for equal magnitudes,

\[
\frac{k_e |q_1|}{r_1^2} = \frac{k_e |q_2|}{r_2^2} \quad \text{or} \quad \frac{9.0 \mu \text{C}}{(6.0 \text{ m} - y)^2} = \frac{8.0 \mu \text{C}}{(y + 4.0 \text{ m})^2}
\]

Solving for \(y\) gives \(y + 4.0 \text{ m} = \sqrt{\frac{8}{9}}(6.0 \text{ m} - y)\), or \(y = 0.85 \text{ m}\).

15.27 If the resultant field is zero, the contributions from the two charges must be in opposite directions and also have equal magnitudes. Choose the line connecting the charges as the x-axis, with the origin at the \(-2.5 \mu \text{C}\) charge. Then, the two contributions will have opposite directions only in the regions \(x < 0\) and \(x > 1.0 \text{ m}\). For the magnitudes to be equal, the point must be nearer the smaller charge. Thus, the point of zero resultant field is on the x-axis at \(x < 0\).

Requiring equal magnitudes gives

\[
\frac{k_e |q_1|}{r_1^2} = \frac{k_e |q_2|}{r_2^2} \quad \text{or} \quad \frac{2.5 \mu \text{C}}{d^2} = \frac{6.0 \mu \text{C}}{(1.0 \text{ m} + d)^2}
\]

Thus, \((1.0 \text{ m} + d)\sqrt{\frac{2.5}{6.0}} = d\)

Solving for \(d\) yields

\[d = 1.8 \text{ m}, \quad \text{or} \quad 1.8 \text{ m} \text{ to the left of the } -2.5 \mu \text{C} \text{ charge}\]

15.28 The magnitude of \(q_2\) is three times the magnitude of \(q_1\) because 3 times as many lines emerge from \(q_2\) as enter \(q_1\). \(|q_2| = 3|q_1|\)

(a) Then, \(q_1/q_2 = -1/3\)
(b) \[q_2 > 0 \] because lines emerge from it, and \[q_1 < 0 \] because lines terminate on it.

15.29 Note in the sketches at the right that electric field lines originate on positive charges and terminate on negative charges. The density of lines is twice as great for the \(-2q\) charge in (b) as it is for the \(1q\) charge in (a).

15.30 Rough sketches for these charge configurations are shown below.

15.31 (a) The sketch for (a) is shown at the right. Note that four times as many lines should leave \(q_1 \) as emerge from \(q_2 \) although, for clarity, this is not shown in this sketch.

(b) The field pattern looks the same here as that shown for (a) with the exception that the arrows are reversed on the field lines.
15.32 (a) In the sketch for (a) at the right, note that there are no lines inside the sphere. On the outside of the sphere, the field lines are uniformly spaced and radially outward.

(b) In the sketch for (b) above, note that the lines are perpendicular to the surface at the points where they emerge. They should also be symmetrical about the symmetry axes of the cube. The field is zero inside the cube.

15.33 (a) [Zero] net charge on each surface of the sphere.

(b) The negative charge lowered into the sphere repels [−5 μC] to the outside surface, and leaves [+5 μC] on the inside surface of the sphere.

(c) The negative charge lowered inside the sphere neutralizes the inner surface, leaving zero charge on the inside. This leaves [−5 μC] on the outside surface of the sphere.

(d) When the object is removed, the sphere is left with [−5.00 μC] on the outside surface and [zero charge on the inside].

15.34 (a) The dome is a closed conducting surface. Therefore, the electric field is zero everywhere inside it.

At the surface and outside of this spherically symmetric charge distribution, the field is as if all the charge were concentrated at the center of the sphere.

(b) At the surface,

\[
E = \frac{k q}{R^2} = \frac{\left(8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2\right)\left(2.0 \times 10^{-4} \, \text{C}\right)}{(1.0 \, \text{m})^2} = 1.8 \times 10^6 \, \text{N/C}
\]
(c) Outside the spherical dome, \(E = \frac{k \cdot q}{r^2} \). Thus, at \(r = 4.0 \text{ m} \),

\[
E = \left(\frac{8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2 \cdot 2.0 \times 10^{-4} \text{ C}}{4.0 \text{ m}^2} \right) = 1.1 \times 10^5 \text{ N/C}
\]

15.35 For a uniformly charged sphere, the field is strongest at the surface.

Thus, \(E_{\text{max}} = \frac{k \cdot q_{\text{max}}}{R^2} \),

or \(q_{\text{max}} = \frac{R^2 \cdot E_{\text{max}}}{k} = \frac{(2.0 \text{ m})^2 \cdot \left(3.0 \times 10^6 \text{ N/C}\right)}{8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2} = 1.3 \times 10^{-3} \text{ C} \)

15.36 If the weight of the drop is balanced by the electric force, then \(mg = |q|E = eE \) or the mass of the drop must be

\[m = \frac{eE}{g} = \frac{(1.6 \times 10^{-19} \text{ C}) \cdot (3 \times 10^4 \text{ N/C})}{9.8 \text{ m/s}^2} \approx 5 \times 10^{-16} \text{ kg} \]

But, \(m = \rho V = \rho \left(\frac{4}{3} \pi r^3\right) \) and the radius of the drop is \(r = \left[\frac{3m}{4 \pi \rho} \right]^{\frac{1}{3}} \)

\[r = \left[\frac{3 \left(5 \times 10^{-16} \text{ kg}\right)}{4 \pi \left(858 \text{ kg/m}^3\right)} \right]^{\frac{1}{3}} = 5.2 \times 10^{-7} \text{ m} \quad \text{or} \quad r \approx 1 \mu\text{m} \]

15.37 (a) \(F = qE = (1.60 \times 10^{-19} \text{ C}) \cdot (3.0 \times 10^4 \text{ N/C}) = 4.8 \times 10^{-15} \text{ N} \)

(b) \(a = \frac{F}{m} = \frac{4.8 \times 10^{-15} \text{ N}}{1.673 \times 10^{-27} \text{ kg}} = 2.9 \times 10^{12} \text{ m/s}^2 \)

15.38 The flux through an area is \(\Phi = EA \cos \theta \), where \(\theta \) is the angle between the direction of the field \(E \) and the line perpendicular to the area \(A \).

(a) \(\Phi = EA \cos \theta = (6.2 \times 10^5 \text{ N/C}) \cdot (3.2 \text{ m}^2) \cdot \cos 0^\circ = 2.0 \times 10^6 \text{ N} \cdot \text{m}^2/\text{C} \)

(b) In this case, \(\theta = 90^\circ \) and \(\Phi = 0 \)
15.39 The area of the rectangular plane is \(A = (0.350 \text{ m})(0.700 \text{ m}) = 0.245 \text{ m}^2 \).

(a) When the plane is parallel to the \(yz \) plane, \(\theta = 0^\circ \), and the flux is

\[
\Phi_E = EA\cos \theta = (3.50 \times 10^3 \text{ N/C})(0.245 \text{ m}^2)\cos 0^\circ = \frac{858 \text{ N} \cdot \text{m}^2/\text{C}}{}
\]

(b) When the plane is parallel to the \(x \)-axis, \(\theta = 90^\circ \) and \(\Phi_E = 0 \)

(c) \(\Phi_E = EA\cos \theta = (3.50 \times 10^3 \text{ N/C})(0.245 \text{ m}^2)\cos 40.0^\circ = \frac{657 \text{ N} \cdot \text{m}^2/\text{C}}{} \)

15.40 In this problem, we consider part (b) first.

(b) Since the field is radial everywhere, the charge distribution generating it must be \(\text{spherically symmetric} \). Also, since the field is radially inward, the net charge inside the sphere is \(\text{negative charge} \).

(a) Outside a spherically symmetric charge distribution, the field is \(E = \frac{kQ}{r^2} \). Thus, just outside the surface where \(r = R \), the magnitude of the field is \(E = k_e |Q|/R^2 \), so

\[
|Q| = \frac{R^2E}{k_e} = \frac{(0.750 \text{ m})^2(890 \text{ N/C})}{8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2} = 5.57 \times 10^{-8} \text{ C} = 55.7 \text{ nC}
\]

Since we have determined that \(Q < 0 \), we now have \(Q = -55.7 \text{ nC} \)

15.41 \(\Phi_E = EA\cos \theta \) and \(\Phi_E = \Phi_{E, \text{max}} \) when \(\theta = 0^\circ \)

Thus, \(E = \frac{\Phi_{E, \text{max}}}{A} = \frac{\Phi_{E, \text{max}}}{\pi d^2/4} = \frac{4(5.2 \times 10^5 \text{ N} \cdot \text{m}^2/\text{C})}{\pi(0.40 \text{ m})^2} = \frac{4.1 \times 10^6 \text{ N}/\text{C}}{} \)

15.42 \(\Phi_E = EA\cos \theta = \left(\frac{k_q}{R^2}\right)(4\pi R^2)\cos 0^\circ = 4\pi k_q \)

\[
\Phi_E = 4\pi \left(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2\right)(5.00 \times 10^{-6} \text{ C}) = \frac{5.65 \times 10^5 \text{ N} \cdot \text{m}^2/\text{C}}{}
\]
15.43 We choose a spherical gaussian surface, concentric with the charged spherical shell and of radius \(r \). Then, \(\Sigma EA \cos \theta = E (4 \pi r^2) \cos 0^\circ = 4 \pi r^2 E \).

(a) For \(r > a \) (that is, outside the shell), the total charge enclosed by the gaussian surface is \(Q = +q - q = 0 \). Thus, Gauss’s law gives \(4 \pi r^2 E = 0 \), or \(E = 0 \).

(b) Inside the shell, \(r < a \), and the enclosed charge is \(Q = +q \).

Therefore, from Gauss’s law, \(4 \pi r^2 E = \frac{q}{\varepsilon_0} \), or \(E = \frac{q}{4 \pi \varepsilon_0 r^2} = \frac{k_q}{r^2} \).

The field for \(r < a \) is \(E = \frac{k_q}{r^2} \) directed radially outward.

15.44 Construct a gaussian surface just barely inside the surface of the conductor, where \(E = 0 \).

Since \(E = 0 \) inside, Gauss’ law says \(\frac{Q}{\varepsilon_0} = 0 \) inside. Thus, any excess charge residing on the conductor must be outside our gaussian surface (that is, on the surface of the conductor).

15.45 \(E = 0 \) at all points inside the conductor, and \(\cos \theta = \cos 90^\circ = 0 \) on the cylindrical surface. Thus, the only flux through the gaussian surface is on the outside end cap and Gauss’s law reduces to \(\Sigma EA \cos \theta = EA_{cap} = \frac{Q}{\varepsilon_0} \).

The charge enclosed by the gaussian surface is \(Q = \sigma A \), where \(A \) is the cross-sectional area of the cylinder and also the area of the end cap, so Gauss’s law becomes

\[
EA = \frac{\sigma A}{\varepsilon_0}, \text{ or } E = \frac{\sigma}{\varepsilon_0}
\]

15.46 Choose a very small cylindrical gaussian surface with one end inside the conductor. Position the other end parallel to and just outside the surface of the conductor.

Since, in static conditions, \(E = 0 \) at all points inside a conductor, there is no flux through the inside end cap of the gaussian surface. At all points outside, but very close to, a conductor the electric field is perpendicular to the conducting surface. Thus, it is parallel to the cylindrical side of the gaussian surface and no flux passes through this cylindrical side. The total flux through the gaussian surface is then \(\Phi = EA \), where \(A \) is the cross-sectional area of the cylinder as well as the area of the end cap.
The total charge enclosed by the cylindrical gaussian surface is $Q = \sigma A$, where σ is the charge density on the conducting surface. Hence, Gauss’s law gives

$$EA = \frac{\sigma A}{\varepsilon_0}$$

or

$$E = \frac{\sigma}{\varepsilon_0}$$

15.47 \[F = k_e \frac{|q_1||q_2|}{r^2} = k_e \frac{e^2}{r^2} = \frac{(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}) (1.60 \times 10^{-19} \text{ C})^2}{(2.00 \times 10^{-15} \text{ m})^2} = 57.5 \text{ N} \]

15.48 \(a\) \quad F = k_e \frac{|q_1||q_2|}{r^2} = k_e \frac{e^2}{r^2}

$$= \frac{(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2) (1.60 \times 10^{-19} \text{ C})^2}{(0.53 \times 10^{-10} \text{ m})^2} = 8.2 \times 10^{-8} \text{ N}$$

(b) \quad F = m_c a_c = m_c \left(\frac{\vec{v}^2}{r} \right), \text{ so}

$$\vec{v} = \frac{r \cdot \vec{F}}{m_c} = \sqrt{\frac{(0.53 \times 10^{-10} \text{ m})(8.2 \times 10^{-8} \text{ N})}{9.11 \times 10^{-31} \text{ kg}}} = 2.2 \times 10^6 \text{ m/s}$$

15.49 \[\text{The three contributions to the resultant electric field at the point of interest are shown in the sketch at the right.} \]

The magnitude of the resultant field is

$$E_R = -E_1 + E_2 + E_3$$

$$E_R = -k_e \frac{|q_1|}{r_1^2} + k_e \frac{|q_2|}{r_2^2} + k_e \frac{|q_3|}{r_3^2} = k_e \left[-\frac{|q_1|}{r_1^2} + \frac{|q_2|}{r_2^2} + \frac{|q_3|}{r_3^2} \right]$$

$$E_R = \left(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2\right) \left[-\frac{4.0 \times 10^{-9} \text{ C}}{(2.5 \text{ m})^2} + \frac{5.0 \times 10^{-9} \text{ C}}{(2.0 \text{ m})^2} + \frac{3.0 \times 10^{-9} \text{ C}}{(1.2 \text{ m})^2} \right]$$

$$E_R = +24 \text{ N/C}, \text{ or } \vec{E}_R = 24 \text{ N/C in the +x direction}$$
15.50 Consider the free-body diagram shown at the right.

\[\sum F_y = 0 \Rightarrow T \cos \theta = mg \quad \text{or} \quad T = \frac{mg}{\cos \theta} \]

\[\sum F_x = 0 \Rightarrow F_x = T \sin \theta = mg \tan \theta \]

Since \(F_x = qE \), we have

\[qE = mg \tan \theta, \quad \text{or} \quad q = \frac{mg \tan \theta}{E} \]

\[q = \frac{(2 \times 10^{-3} \text{ kg})(9.80 \text{ m/s}^2) \tan 15.0^\circ}{1.00 \times 10^3 \text{ N/C}} = 5.25 \times 10^{-6} \text{ C} = 5.25 \mu \text{C} \]

15.51 (a) At a point on the \(x \)-axis, the contributions by the two charges to the resultant field have equal magnitudes given by \(E_1 = E_2 = \frac{kq}{r^2} \).

The components of the resultant field are

\[E_y = E_{1y} - E_{2y} = \left(\frac{kq}{r^2} \right) \sin \theta - \left(\frac{kq}{r^2} \right) \sin \theta = 0 \]

and

\[E_x = E_{1x} + E_{2x} = \left(\frac{kq}{r^2} \right) \cos \theta + \left(\frac{kq}{r^2} \right) \cos \theta = \left[\frac{k(2q)}{r^2} \right] \cos \theta \]

Since \(\cos \theta = \frac{b/r}{r^2} = \frac{b}{r^2} = \frac{b}{(a^2 + b^2)^{\frac{1}{2}}} \), the resultant field is

\[\vec{E}_R = \left[\frac{k(2q)b}{(a^2 + b^2)^{\frac{1}{2}}} \right] \text{ in the } +x \text{ direction} \]
(b) Note that the result of part (a) may be written as \(E_r = \frac{k_r(Q)b}{(a^2 + b^2)^{3/2}} \) where \(Q = 2q \) is the total charge in the charge distribution generating the field.

In the case of a uniformly charged circular ring, consider the ring to consist of a very large number of pairs of charges uniformly spaced around the ring. Each pair consists of two identical charges located diametrically opposite each other on the ring. The total charge of pair number \(i \) is \(Q_i \). At a point on the axis of the ring, this pair of charges generates an electric field contribution that is parallel to the axis and has magnitude \(E_i = \frac{k_i b Q_i}{(a^2 + b^2)^{3/2}} \).

The resultant electric field of the ring is the summation of the contributions by all pairs of charges, or

\[
E_r = \sum E_i = \left[\frac{k_i b}{(a^2 + b^2)^{3/2}} \right] \sum Q_i = \frac{k_i b Q}{(a^2 + b^2)^{3/2}}
\]

where \(Q = \Sigma Q_i \) is the total charge on the ring.

\[
\vec{E}_r = \frac{k Q b}{(a^2 + b^2)^{3/2}} \text{ in the +x direction}
\]

15.52 (a) \(a_y = \frac{v_y^2 - v_{0y}^2}{2(\Delta y)} = \frac{(21.0 \text{ m/s})^2 - 0}{2(5.00 \text{ m})} = 44.1 \text{ m/s}^2 \) (downward)

Since \(a_y > g \), the electrical force must be directed downward, aiding the gravitational force in accelerating the bead. Because the bead is positively charged, the electrical force acting on it is in the direction of the electric field. Thus, the field is directed downward.

(b) Taking downward as positive, \(\Sigma F_y = qE + mg = ma_y \).

Therefore,

\[
q = \frac{m(a_y - g)}{E} = \frac{(1.00 \times 10^{-3} \text{ kg})[(44.1 - 9.80) \text{ m/s}^2]}{1.00 \times 10^4 \text{ N/C} = 3.43 \times 10^{-6} \text{ C} = \boxed{3.43 \mu\text{C}}} \]
15.53 Because of the spherical symmetry of the charge distribution, any electric field present will be radial in direction. If a field does exist at distance R from the center, it is the same as if the net charge located within $r \leq R$ were concentrated as a point charge at the center of the inner sphere. Charge located at $r > R$ does not contribute to the field at $r = R$.

(a) At $r = 1.00 \text{ cm}$, $E = 0$ since static electric fields cannot exist within conducting materials.

(b) The net charge located at $r \leq 3.00 \text{ cm}$ is $Q = +8.00 \mu \text{C}$.

Thus, at $r = 3.00 \text{ cm}$,

$$E = \frac{kQ}{r^2} = \frac{(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)(8.00 \times 10^{-6} \text{ C})}{(3.00 \times 10^{-2} \text{ m})^2} = 7.99 \times 10^7 \text{ N/C (outward)}$$

(c) At $r = 4.50 \text{ cm}$, $E = 0$ since this is located within conducting materials.

(d) The net charge located at $r \leq 7.00 \text{ cm}$ is $Q = +4.00 \mu \text{C}$.

Thus, at $r = 7.00 \text{ cm}$,

$$E = \frac{kQ}{r^2} = \frac{(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)(4.00 \times 10^{-6} \text{ C})}{(7.00 \times 10^{-2} \text{ m})^2} = 7.34 \times 10^6 \text{ N/C (outward)}$$
15.54 The charges on the spheres will be equal in magnitude and opposite in sign. From \(F = k \frac{q^2}{r^2} \), this charge must be

\[
q = \sqrt{\frac{F \cdot r^2}{k}} = \sqrt{\frac{(1.00 \times 10^4 \text{ N})(1.00 \text{ m})^2}{8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2}} = 1.05 \times 10^{-3} \text{ C}
\]

The number of electrons transferred is

\[
n = \frac{q}{e} = \frac{1.05 \times 10^{-3} \text{ C}}{1.60 \times 10^{-19} \text{ C}} = 6.59 \times 10^{15}
\]

The total number of electrons in 100-g of silver is

\[
N = \left(47 \frac{\text{electrons}}{\text{atom}}\right) \left(6.02 \times 10^{23} \frac{\text{atoms}}{\text{mole}}\right) \left(1 \frac{\text{mole}}{107.87 \text{ g}}\right)(100 \text{ g}) = 2.62 \times 10^{25}
\]

Thus, the fraction transferred is

\[
\frac{n}{N} = \frac{6.59 \times 10^{15}}{2.62 \times 10^{25}} = \frac{2.51 \times 10^{-10}}{} \text{ (that is, 2.51 out of every 10 billion).}
\]

15.55 \(\Phi_e = EA \cos \theta \)

\[
e = (2.00 \times 10^4 \text{ N/C})[(6.00 \text{ m})(3.00 \text{ m})] \cos 10.0^\circ = 3.55 \times 10^5 \text{ N} \cdot \text{m}^2/\text{C}
\]

15.56 (a) The downward electrical force acting on the ball is

\[
F_e = qE = (2.00 \times 10^{-6} \text{ C})(1.00 \times 10^5 \text{ N/C}) = 0.200 \text{ N}
\]

The total downward force acting on the ball is then

\[
F = F_e + mg = 0.200 \text{ N} + (1.00 \times 10^{-3} \text{ kg})(9.80 \text{ m/s}^2) = 0.210 \text{ N}
\]

Thus, the ball will behave as if it was in a modified gravitational field where the effective free-fall acceleration is

\[
\text{“}g\text{”} = \frac{F}{m} = \frac{0.210 \text{ N}}{1.00 \times 10^{-3} \text{ kg}} = 210 \text{ m/s}^2
\]
The period of the pendulum will be

\[T = 2\pi \sqrt{\frac{L}{g}} = 2\pi \sqrt{\frac{0.500 \text{ m}}{210 \text{ m/s}^2}} = 0.307 \text{ s} \]

(b) Yes. The force of gravity is a significant portion of the total downward force acting on the ball. Without gravity, the effective acceleration would be

\[g'' = \frac{F_y}{m} = \frac{0.200 \text{ N}}{1.00 \times 10^{-3} \text{ kg}} = 200 \text{ m/s}^2 \]

giving \[T = 2\pi \sqrt{\frac{0.500 \text{ m}}{200 \text{ m/s}^2}} = 0.314 \text{ s} \]

a 2.28% difference from the correct value with gravity included.

15.57 The sketch at the right gives a free-body diagram of the positively charged sphere. Here, \(F_1 = k \frac{|q|^2}{r^2} \) is the attractive force exerted by the negatively charged sphere and \(F_2 = qE \) is exerted by the electric field.

\[\Sigma F_y = 0 \Rightarrow T \cos 10^\circ = mg \quad \text{or} \quad T = \frac{mg}{\cos 10^\circ} \]

\[\Sigma F_x = 0 \Rightarrow F_2 = F_1 + T \sin 10^\circ \quad \text{or} \quad qE = \frac{k \frac{|q|^2}{r^2}}{r^2} + mg \tan 10^\circ \]

At equilibrium, the distance between the two spheres is \(r = 2(L \sin 10^\circ) \). Thus,

\[E = \frac{k \frac{|q|^2}{r^2}}{4(L \sin 10^\circ)^2} + \frac{mg \tan 10^\circ}{q} \]

\[= \frac{(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2) (5.0 \times 10^{-8} \text{ C})}{4\left[(0.100 \text{ m}) \sin 10^\circ\right]^2} + \frac{(2.0 \times 10^{-3} \text{ kg})(9.80 \text{ m/s}^2) \tan 10^\circ}{(5.0 \times 10^{-8} \text{ C})} \]

or the needed electric field strength is \(E = 4.4 \times 10^5 \text{ N/C} \).
15.58 As shown in the sketch, the electric field at any point on the x-axis consists of two parts, one due to each of the charges in the dipole.

\[
E = E_+ - E_- = \frac{k_+ |q|}{r_+^2} - \frac{k_- |q|}{r_-^2}
\]

\[
E = \frac{k_+ |q|}{(x-a)^2} - \frac{k_- |q|}{(x+a)^2} = k_+ |q| \left[\frac{(x+a)^2}{(x-a)^2} \right] = k_+ |q| \frac{4ax}{(x^2 - a^2)^2}
\]

Thus, if \(x^2 > a^2 \), this gives \(E \approx k_+ |q| \frac{4ax}{x^4} \).

15.59 (a) Consider the free-body diagram for the ball given in the sketch.

\[
\Sigma F_x = 0 \Rightarrow T \sin 37.0^\circ = qE_x \quad \text{or} \quad T = \frac{qE_x}{\sin 37.0^\circ}
\]

and

\[
\Sigma F_y = 0 \Rightarrow qE_y + T \cos 37.0^\circ = mg \quad \text{or} \quad qE_y + qE_x \cot 37.0^\circ = mg
\]

Thus, \(q = \frac{mg}{qE_y + qE_x \cot 37.0^\circ} = \frac{(1.00 \times 10^{-3} \text{ kg})(9.80 \text{ m/s}^2)}{5.00 + (3.00 \cot 37.0^\circ) \times 10^5 \text{ N/C}} \)

\(= 1.09 \times 10^{-8} \text{ C} = 10.9 \text{ nC} \)

(b) From \(\Sigma F_x = 0 \), we found that \(T = \frac{qE_x}{\sin 37.0^\circ} \).

Hence, \(T = \frac{(1.09 \times 10^{-8} \text{ C})(3.00 \times 10^5 \text{ N/C})}{\sin 37.0^\circ} = 5.44 \times 10^{-3} \text{ N} \)

15.60 (a) At any point on the x-axis in the range \(0 < x < 1.00 \text{ m} \), the contributions made to the resultant electric field by the two charges are both in the positive x direction. Thus, it is not possible for these contributions to cancel each other and yield a zero field.
Electric Forces and Electric Fields

(b) Any point on the x-axis in the range \(x < 0 \) is located closer to the larger magnitude charge \((q = 5.00 \mu\text{C})\) than the smaller magnitude charge \((|q| = 4.00 \mu\text{C})\). Thus, the contribution to the resultant electric field by the larger charge will always have a greater magnitude than the contribution made by the smaller charge. It is not possible for these contributions to cancel to give a zero resultant field.

(c) If a point is on the x-axis in the region \(x > 1.00 \text{ m} \), the contributions made by the two charges are in opposite directions. Also, a point in this region is closer to the smaller magnitude charge than it is to the larger charge. Thus, there is a location in this region where the contributions of these charges to the total field will have equal magnitudes and cancel each other.

(d) When the contributions by the two charges cancel each other, their magnitudes must be equal. That is,

\[
k \frac{5.00 \mu\text{C}}{x^2} = k \frac{4.00 \mu\text{C}}{(x - 1.00 \text{ m})^2}
\]

or

\[
x - 1.00 \text{ m} = \pm \sqrt{\frac{4}{5}} x
\]

Thus, the resultant field is zero at

\[
x = \frac{1.00 \text{ m}}{1 - \sqrt{4/5}} = +9.47 \text{ m}
\]

15.61 We assume that the two spheres have equal charges, so the repulsive force that one exerts on the other has magnitude

\[
F_r = k \frac{q^2}{r^2}.
\]

From Figure P15.61 in the textbook, observe that the distance separating the two spheres is

\[
r = 3.0 \text{ cm} + 2[(5.0 \text{ cm}) \sin 10^\circ] = 4.7 \text{ cm} = 0.047 \text{ m}
\]

From the free-body diagram of one sphere given above, observe that

\[
\Sigma F_y = 0 \Rightarrow T \cos 10^\circ = mg \quad \text{or} \quad T = mg / \cos 10^\circ
\]

and

\[
\Sigma F_x = 0 \Rightarrow F_c = T \sin 10^\circ = \left(\frac{mg}{\cos 10^\circ} \right) \sin 10^\circ = mg \tan 10^\circ
\]
Thus, \(k \cdot \frac{q^2}{r^2} = mg \tan 10^\circ \)

or \[
q = \sqrt{\frac{mg r^2 \tan 10^\circ}{k_e}} = \sqrt{\left(0.015 \text{ kg}\right)\left(9.8 \text{ m/s}^2\right)\left(0.047 \text{ m}\right) \tan 10^\circ}
\]

\[
8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2
\]

\[
q = 8.0 \times 10^{-8} \text{ C} \quad \text{or} \quad q \sim 10^{-7} \text{ C}
\]

15.62 Consider the free-body diagram of the rightmost charge given below.

\[\Sigma F_y = 0 \Rightarrow T \cos \theta = mg \quad \text{or} \quad T = mg / \cos \theta\]

and \[\Sigma F_x = 0 \Rightarrow F_x = T \sin \theta = (mg / \cos \theta) \sin \theta = mg \tan \theta\]

But, \[
F_x = \frac{k \cdot q^2}{r_1^2} + \frac{k \cdot q^2}{r_2^2} = \frac{k \cdot q^2}{(L \sin \theta)^2} + \frac{k \cdot q^2}{(2L \sin \theta)^2} = \frac{5k \cdot q^2}{4L^2 \sin^2 \theta}
\]

Thus, \[
\frac{5k \cdot q^2}{4L^2 \sin^2 \theta} = mg \tan \theta \quad \text{or} \quad q = \sqrt{\frac{4L^2 mg \sin^2 \theta \tan \theta}{5k_e}}
\]

If \(\theta = 45^\circ \), \(m = 0.10 \text{ kg} \), and \(L = 0.300 \text{ m} \) then

\[
q = \sqrt{\frac{4(0.300 \text{ m})^2 (0.10 \text{ kg})(9.80 \text{ m/s}^2) \sin^2 (45^\circ) \tan (45^\circ)}{5(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)}}
\]

or \(q = 2.0 \times 10^{-6} \text{ C} = 2.0 \mu\text{C} \)

15.63 (a) When an electron (negative charge) moves distance \(\Delta x \) in the direction of an electric field, the work done on it is

\[
W = F_x (\Delta x) \cos \theta = eE (\Delta x) \cos 180^\circ = -eE (\Delta x)
\]

From the work-energy theorem \(\left(W_{net} = KE_f - KE_i\right) \) with \(KE_f = 0 \), we have

\[
-eE(\Delta x) = -KE_i, \quad \text{or} \quad E = \frac{KE_i}{e(\Delta x)} = \frac{1.60 \times 10^{-17} \text{ J}}{(1.60 \times 10^{-19} \text{ C})(0.100 \text{ m})} = 1.00 \times 10^5 \text{ N/C}
\]
(b) The magnitude of the retarding force acting on the electron is \(F_e = eE \), and Newton’s second law gives the acceleration as \(a = -F_e/m = -eE/m \). Thus, the time required to bring the electron to rest is

\[
t = \frac{v - v_0}{a} = \frac{0 - \sqrt{2(KE_1)/m}}{-eE/m} = \frac{\sqrt{2m(KE_1)}}{eE}
\]

or

\[
t = \sqrt{\frac{2\left(9.11 \times 10^{-31} \text{ kg}\right)\left(1.60 \times 10^{-17} \text{ J}\right)}{(1.60 \times 10^{-19} \text{ C})(1.00 \times 10^3 \text{ N/C})}} = 3.37 \times 10^{-8} \text{ s} = 33.7 \text{ ns}
\]

(c) After bringing the electron to rest, the electric force continues to act on it causing the electron to accelerate in the direction opposite to the field at a rate of

\[
|a| = \frac{eE}{m} = \frac{\left(1.60 \times 10^{-19} \text{ C}\right)\left(1.00 \times 10^3 \text{ N/C}\right)}{9.11 \times 10^{-31} \text{ kg}} = 1.76 \times 10^{14} \text{ m/s}^2
\]

15.64 (a) The acceleration of the protons is downward (in the direction of the field) and

\[
|a_y| = \frac{F_e}{m} = \frac{eE}{m} = \frac{\left(1.60 \times 10^{-19} \text{ C}\right)(720 \text{ N/C})}{1.67 \times 10^{-27} \text{ kg}} = 6.90 \times 10^{10} \text{ m/s}^2
\]

The time of flight for the proton is twice the time required to reach the peak of the arc, or

\[
t = 2t_{\text{peak}} = 2\left(\frac{v_0 \sin \theta}{|a_y|}\right) = \frac{2v_0 \sin \theta}{|a_y|}
\]

The horizontal distance traveled in this time is

\[
R = v_0 t = \left(v_0 \cos \theta \right) \left(\frac{2v_0 \sin \theta}{|a_y|}\right) = \frac{v_0^2 \sin 2\theta}{|a_y|}
\]
Thus, if $R = 1.27 \times 10^{-3}$ m, we must have

$$\sin 2\theta = \frac{a_y R}{v_0^2} = \frac{(6.90 \times 10^{10} \text{ m/s}^2)(1.27 \times 10^{-3} \text{ m})}{(9.55 \text{ m/s})^2} = 0.961$$

giving $2\theta = 73.9^\circ$ or $2\theta = 180^\circ - 73.9^\circ = 106.1^\circ$. Hence, $\theta = 37.0^\circ$ or 53.0°.

(b) The time of flight for each possible angle of projection is:

For $\theta = 37.0^\circ$:

$$t = \frac{2v_0 \sin \theta}{|a_y|} = \frac{2(9.550 \text{ m/s})\sin 37.0^\circ}{6.90 \times 10^{10} \text{ m/s}^2} = 1.66 \times 10^{-7} \text{ s}$$

For $\theta = 53.0^\circ$:

$$t = \frac{2v_0 \sin \theta}{|a_y|} = \frac{2(9.550 \text{ m/s})\sin 53.0^\circ}{6.90 \times 10^{10} \text{ m/s}^2} = 2.21 \times 10^{-7} \text{ s}$$